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Introduction
Generative AI (GenAI) is transforming industries, necessitating the development of specialized hardware to 

manage its computational demands. AI accelerators or AI chips crafted specifically for AI tasks are critical in this 

advancement, but designing effective AI chips presents significant challenges.

Certain applications hinge on the absolute criticality of every millisecond—these are known as latency-critical 

scenarios. For example, latency is crucial in high-frequency trading environments, where algorithms execute 

transactions in microseconds to leverage fleeting market opportunities. Similarly, cloud services are committed 

to maintaining 99-percentile latency guarantees to ensure stable and predictable performance, even during peak 

loads. 

Another critical measure is the throughput, which is directly related to the performance of the AI application. 

One traditional method to manage high computational throughput is batching, where large amounts of tasks are 

grouped and executed consecutively. However, this technique typically sacrifices latency for throughput, which is 

a critical trade-off.

Equally critical, yet often overlooked, is flexibility: the balance between memory and compute operations at the 

system level. Text-based Large Language Model (LLM) operations are memory-intensive, relying heavily on 

frequent RAM access to manage the vast array of parameters that underpin their linguistic functions. In contrast, 

Text-to-Video applications demand robust compute capabilities to manage intensive graphical processing 

and real-time data handling effectively. To support such a diverse array of applications, an AI chip must adeptly 

navigate the demands of both memory and computational intensity without compromise.

In sum, an effective AI chip must find the sweet spot between latency, throughput and flexibility.
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ATOM™: System-on-Chip for AI Inference
Rebellions’ ATOM™ is an AI accelerator engineered specifically for AI inference tasks with formidable capacity, 

manufactured on Samsung’s advanced 5nm process. It delivers 32 Tera Floating Point Operations per Second 

(TFLOPS) for FP16 and 128 Trillion Operations Per Second (TOPS) for INT8, enhanced by eight Neural Engines and 

64 MB of on-chip SRAM. With an intricate memory architecture engineered with unparalleled technical mastery, 

ATOM™ is designed for high performance and peak efficiency.

Flexibility and High Utilization
In designing our chip, we prioritized flexibility and high compute utilization to address these key challenges. 

By adopting a CGRA (Coarse-Grained Reconfigurable Array) architecture, the processing element tiles can be 

programmed and reprogrammed to carry out a variety of functions, maximizing its flexibility. We also kept the 

utilization rate high, so that tasks are processed continuously with minimal idle resources, directly enhancing 

efficiency and reducing latency. 

Built on a flexible architecture, ATOM™ leverages synchronization mechanisms to activate resources precisely 

when needed, to support its powerful parallelism. The time and effort to reach operational readiness is minimized, 

leading to reduced latency. Moreover, its robust multi-layered memory hierarchy provides significant bandwidth, 

reducing data dependency, while the sophisticated synchronization lessens control dependency. These features 

together optimize resource utilization, significantly boosting overall performance and efficiency in a seamless 

integration.
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ATOM™ comes in RBLN-CA12, a single slot, FHFL (Full Height, Full Length) PCIe Gen5 card with a TDP (Thermal 

Design Power) of 60-130 W. RBLN-CA12 features 16 GB of GDDR6 memory with a bandwidth of 256 GB/s and host 

and card-to-card interfaces via PCIe Gen5 x16. It also has the Multi-Instance capability, partitioning ATOM™ into 16 

independent hardware-isolated instances, allowing a dynamic allocation of resources and powerful multitasking.
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RBLN-CA12

RBLN-CA12

AI Accelerator ATOM™

FP16 32 TFLOPS

INT8 128 TOPS

On-chip SRAM 64 MB

External Memory GDDR6, 256 GB/s, 16 GB

Multi-Instance Hardware isolation up to 16
independent tasks

Thermal Solution Passive

Mechanical Form Factor Full Height, Full Length (FHFL)
266.5 x 111 x 19 mm

Thermal Design Power 60-130 W

Host and Card-to-Card Interface PCIe Gen5 x16, 64 GB/s

Connectors One CPU 8-pin power connector (2x4)

Weight Total: 615 g

[Table 1. RBLN-CA12 Specifications]



ATOM™ SoC

[Figure 1. ATOM™ Multi-layered SoC Architecture]

ATOM™ is a multi-core System-on-Chip, consolidating all essential components onto a unified substrate. As 

shown in Figure 1, this architecture integrates Neural Engines, the Command Processor, shared on-chip memory 

(SRAM), and GDDR6 memory within one compact surface. The high degree of integration not only diminishes 

physical footprint but also optimizes power efficiency. 

While this configuration in itself ensures streamlined inter-component communication and significantly reduced 

latency, it is further supported by a sophisticated Network-on-Chip (NoC) that provides high bandwidth. The 

architecture is also designed to support synchronizations between multiple layers.
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Neural Engine

[Figure 2. ATOM™ Neural Engine]

Hierarchical Memory Subsystem

[Figure 3. ATOM™ Hierarchical Memory Subsystem]

ATOM™’s multi-layered memory architecture is designed to ensure peak performance efficiency, delivering ample 

bandwidth for the Neural Engines while preserving minimal latency. 

At the foundation, a dedicated 4 MB Scratch Pad (L0) within each Neural Engine facilitates immediate local data 

access. The L1 Neural Cache, located close to the Engines, provides faster access to data. The L2 Shared Memory, 

a 32 MB SRAM, employs multiple levels of interleaving to support parallelism, optimize bandwidth, and minimize 

latency. Finally, ATOM™ integrates 16 GB of GDDR6, ensuring high throughput with lower power consumption.

ATOM™’s Neural Engine is where the actual computations 

take place. The compute units within the Neural Engines 

incorporate a blend of heterogeneous Single Instruction, 

Multiple Data (SIMD) and Multiple Instruction, Multiple 

Data (MIMD) compute elements, harnessing their 

respective capabilities for parallel performance and 

dependency control across diverse computational 

scenarios at the instruction levels.

The compute units are fortified with a 4 MB Scratch 

Pad memory, facilitating access to interim data in the 

SRAM at a speed up to 8 TB/s. This design mitigates 

bandwidth limitations and reduces latency by minimizing 

reliance on off-chip memory sources, thereby optimizing 

performance and energy efficiency.

Task Managers reside in each Neural Engine to accelerate 

synchronization on the local hardware level, effectively 

working alongside the Command Processor in bringing 

about maximum compute utilization.

The compute units, Scratch Pad memory, and Task 

Managers within the Neural Engines collectively 

contribute to ATOM™’s high utilization and low 

latency performance.
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Multi-level Synchronization and Parallelism

[Figure 4. ATOM™ Synchronization Scheme]

ATOM™’s advanced synchronization mechanisms 

effectively support parallelism, allowing the chip to 

scale its performance. Synchronization takes place 

both at the instruction and task levels, enabled by 

Command Processors and Task Managers and 

dedicated local buses that ensure smooth flow 

through reliable bandwidth.

Neural Engines communicate through Task Managers 

across the L1 Sync Bus for instruction-level inter-

Engine communication. Neural Engines Clusters, 

which consist of four Neural Engines, are connected 

to the Task Direct Memory Access (TDMA) through 

the L 2 Sync Bus .  TDMA and the Ho st  Dire ct 

Memory Access (HDMA) are linked to the Command 

Processor via L3 and L4 Sync Bus, respectively. This 

arrangement allows the system to globally check for 

dependencies, synchronizing different Engines and 

thereby allowing for the dense compute operations.
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[Figure 5-1. Sequential Execution without Task Managers]

In a basic configuration where the Command Processor solely governs command execution, tasks are processed 

sequentially, leading to high latency. In Figure 5-1, each task can only be executed once its dependency is resolved 

by the Command Processor, resulting in a slow and inefficient process. There is communication overhead, 

critically impacting latency and necessitating further optimization.

[Figure 5-2. Parallel Execution with Task Managers]

To address this, we introduced Task Managers that autonomously resolve local dependencies directly at the 

hardware level. In Figure 5-2, the DMA/COMP tasks, each belonging to a Neural Engine, can be executed at the 

same time, in parallel, without having to wait for the Command Processor to resolve their dependencies. The Task 

Manager resolves dependencies across all Neural Engines, allowing the tasks to be executed simultaneously. 

This process is made possible by the dedicated L1/L2 data paths designed explicitly for this purpose, as shown 

in Figure 4. Consequently, tasks across all Neural Engines are coordinated efficiently, enabling smooth parallel 

execution and achieving minimal latency.
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Benchmark Results
To demonstrate ATOM™’s inference performance for GenAI use cases, we conducted performance measurements 

on the T5-3B and SDXL-Turbo models, which are renowned for their applications in Natural Language Processing 

and Text-to-Image Generation, respectively. 

These tests were carried out against NVIDIA’s A100, which serves as an appropriate competitor for evaluating 

ATOM™’s capabilities in the market. By focusing on prominent GenAI use cases, we provide a clear and direct 

comparison of how ATOM™ stands against existing solutions in handling cutting-edge AI tasks.

- Language Model Benchmark: T5-3B

Introduced by Google, the T5, or Text-to-Text Transfer Transformer, is a groundbreaking Large 

Language Model that leverages the architecture of the widely-utilized Transformer. T5 models are 

offered in configurations ranging from 60 million to 11 billion parameters.

For our demonstration, we deployed the 3 billion parameter model, which is versatile enough for tasks 

such as language translation, text summarization, answering questions, and text generation. The test 

was conducted on batch size 1.

The resulting metrics—performance, quantified by tokens generated per second; power consumption, 

measured in watts; and power efficiency, calculated as performance per watt—reveal that ATOM™ 

achieves up to 44% greater power efficiency compared to the A100. This not only underscores 

ATOM™’s robust capabilities but also its superior efficiency in harnessing computational power for 

complex language processing tasks.

* �Both tests are conducted on FP16 precision. ATOM™’s result is based on projected data. A100’s result is based on the 
Hugging Face transformers library.

Input Output
Performance

(Tokens/s)
Average

Power (W)
Average Power Efficiency

(Token/J)

ATOMTM 349 512 45.0 56.1 0.80

A100 349 512 44.3 177.5 0.25
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- Text-to-Image Model Benchmark: SDXL-Turbo

SDXL-Turbo, a Text-to-Image model developed by Stability AI, excels in generating high-resolution 

images and offers significantly faster inference speeds compared to standard stable diffusion models. 

This advancement has catalyzed the adoption of diffusion-based image generation for practical 

applications.

Testing results indicate that ATOM™ consumes considerably less power than the A100 while still 

delivering high-quality outputs. This efficiency demonstrates ATOM™’s capability to achieve superior 

results with fewer resources, markedly reducing operational costs and enhancing sustainability in 

service deployments, as energy consumption is a critical factor that directly influences the Total Cost 

of Ownership (TCO) for service providers.

* Image size 512x512, Diffusion step: 1
* ATOM™’s result is based on projected data. A100’s result is based on the Hugging Face diffusers library.

Performance
(img/s)

Power (W)
Power Efficiency

(Performance/Power)

ATOMTM 3.74 60.3 0.062

A100 7.36 192.7 0.038
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Conclusion
As businesses are increasingly dependent on AI services, finding the right AI chip that can scale sustainably 

presents a formidable challenge. The ideal AI chip must strike a precise balance between flexibility, power 

efficiency, and high performance, without sacrificing latency. ATOM™ has been designed from the ground up 

to meet these demands, utilizing a CGRA architecture to ensure adaptability and high compute utilization. Its 

innovative Neural Engines, advanced multi-layered memory architecture, and robust synchronization capabilities 

optimize both latency and power efficiency. Furthermore, benchmark tests with T5-3B and SDXL-Turbo models 

demonstrate that ATOM™ delivers up to 44% greater power efficiency than NVIDIA’s A100. These results highlight 

ATOM™’s capacity to drastically reduce Total Cost of Ownership (TCO) and enhance profitability for AI services, 

establishing it as the optimal AI chip for a sustainable AI service.
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