
White Paper

Understanding
RBLN Compiler



Contents

© 2024 Rebellions Inc. All rights reserved

Compilers in AI Inference

RBLN Compiler

Conclusion

Optimizations with Global Data

Optimization Goals

Compilation Steps

Graph optimization and op fusion

Op splitting and grouping

Op tiling

Op scheduling

Bufferization

Memory allocation

Dependency analysis

Command scheduling

Code generation

Compile-time Memory 
and Dependency Management 



© 2024 Rebellions Inc. All rights reserved 03

Compilers in AI Inference
A compiler translates high-level code into low-level machine code, but its role becomes especially crucial for deep 

learning models. Before delving into the role of the RBLN Compiler in accelerated AI inference, we need to grasp 

some characteristics unique to AI compilers.

Optimizations with Global Data

Compile-time Memory and Dependency Management 

During inference, AI compilers optimize the execution of machine learning models based on the global data and 

computations. That is, AI compilers analyze the entire computational graph and data dependencies across all 

operations in the model, enabling global optimization strategies such as scheduling, memory allocation, and 

parallel execution. By doing so, AI compilers generate highly optimized code that minimizes latency, maximizes 

throughput, and efficiently utilizes hardware resources like Rebellions’ ATOM™.

During AI inference, memory allocation, cache (SRAM) utilization, and dependency management are handled 

at compile-time, allowing for precise control over resource allocation and data flow. Unlike traditional compilers, 

where memory allocation is dynamic, and caching and dependency management are left to the hardware 

during runtime, AI compilers pre-allocate memory and optimize data placement in SRAM based on the entire 

computational graph. This approach minimizes latency and maximizes efficiency by ensuring that all memory 

and dependency considerations are tightly integrated into the compilation process, tailored specifically for the 

AI model’s execution.



© 2024 Rebellions Inc. All rights reserved 04

With the unique demands of AI compilers in focus, their high-level goals can be distilled into two key objectives:

The rationale behind these goals is clear. Fast AI inference relies on the efficient parallel execution of Direct 

Memory Access (DMA) and computational tasks. DMA facilitates swift data transfer between DRAM and SRAM, 

which is crucial for maintaining the data flow needed to keep compute units operating at maximum utilization. 

Concurrently, the parallel execution of compute tasks across multiple cores—such as ATOM™’s Neural Engines—

enables simultaneous processing of different segments of the neural network.

By intelligently scheduling DMA and compute tasks, the system can minimize idle time, reduce latency, and 

achieve higher throughput, ensuring that data is continuously available for processing without bottlenecks. 

This parallelism is critical for maximizing the performance of AI models, especially in real-time and low-latency 

applications.

RBLN Compiler

Optimization Goals

AI models are represented as computational graphs consisting of nodes and edges that dictate the flow of data. 

To accelerate inference, these graphs undergo rigorous optimization processes. Techniques such as Common 

Subexpression Elimination (CSE) and Dead Code Elimination (DCE) are employed to streamline the graph by 

removing redundant or unnecessary operations, effectively reducing its execution time, or latency.

Op fusion is the process by which multiple operators are fused into a single operator so that tensor and vector 

computations can be executed in parallel. It also reduces data transfers from shared memory and Scratch Pad in 

the Neural Engines.

Compilation Steps

- Graph optimization and op fusion

· Achieving fast computation with minimal direct memory access
· Maximizing parallelization of compute and memory operations



© 2024 Rebellions Inc. All rights reserved 05

In some instances, operations are simply too big to be handled efficiently by the system. When an operation 

exceeds the storage capacity of SRAM, it must be meticulously broken down into smaller, more manageable 

pieces—a process known as op splitting. Splitting the operations involves technical fine-tuning to maximize 

efficiency by taking into consideration the adjacent operations so that they can be scheduled optimally. This 

optimal scheduling is referred to as grouping, which minimizes unnecessary data transfers. Overall, op splitting 

and grouping lead to reduced overhead and maximized hardware utilization, ensuring that the system’s 

capabilities are leveraged to their fullest potential.

Computation within the Neural Engines is further optimized through op tiling, which divides operations into 

optimally manageable segments across the multiple Neural Engines to enhance parallelism. Depending on 

the operation types—such as matrix multiplications or activations—and the shapes of the tensors, Rebellions’ 

Compute Library generates a tailored program, based on Rebellions’ RISC ISA for Neural Engines. During 

the generation, the Compute Library determines computation details such as tiling, required SRAM size, and 

estimated compute time, ensuring precise and efficient computation. The information determined by the 

Compute Library is used by the Compiler in further compiler passes such as SRAM allocation and command 

scheduling.

The scheduling of operations within the Neural Engines is of paramount importance. The Compiler must ensure 

that SRAM is utilized as efficiently as possible, adhering to the underlying principle of maximizing hardware 

utilization through parallelism.

In the early stages of compilation, a model is represented by a computational graph consisting of pure tensor 

operations that do not reveal memory operations. The tensor operations are abstract and do not directly 

correspond to specific memory locations like DRAM or SRAM. Bufferization bridges this gap by converting 

abstract data structures into concrete memory buffers—contiguous blocks of memory where data is stored. 

This conversion allows the Compiler to manage memory more effectively, ensuring that data is stored, accessed, 

and reused in the most efficient way possible, thereby reducing redundant SRAM usage.

Bufferization also facilitates more direct interaction with hardware, making it essential for efficient execution. 

Mapping operations to specific buffers enables the Compiler to generate code that is tightly integrated with the 

hardware’s capabilities.

- Op splitting and grouping

- Op tiling

- Op scheduling

- Bufferization



© 2024 Rebellions Inc. All rights reserved 06

During memory allocation, SRAM is allocated to buffers based on their lifetimes—ensuring that each buffer 

occupies memory only when necessary. By managing these lifetimes effectively, the system can parallelize 

compute and memory operations. This means that while some parts of the hardware are performing 

computations, others are simultaneously loading or storing data involved with previous or next computation 

tasks. This parallelism maximizes utilization, improves processing speed, and ensures that the computational 

resources are continuously engaged, avoiding unnecessary delays.

During dependency analysis, the Compiler analyzes memory (DRAM/SRAM) spaces accessed by each compute 

and memory operation and finds dependencies between the operations that should be preserved during the 

model execution. It is crucial for ensuring the correct execution order and for optimizing performance through 

parallelization and other compiler optimizations. By understanding and managing dependencies, systems 

can execute programs more efficiently, especially in environments where parallelism is key to achieving high 

performance.

The RBLN Compiler also plays a crucial role in determining the execution order of instructions. The primary 

objectives of command scheduling are to maximize parallelism for memory accesses and compute operations 

while respecting memory dependencies, ensuring that the system operates at peak efficiency.

In the final stage, the RBLN Compiler generates optimized machine code for the Command Processor, which 

oversees the execution of the workload. Rebellions’ AI accelerator chip excels at handling dependencies and 

memory management, allowing the Compiler to produce streamlined, performance-optimized code that 

leverages the hardware’s capabilities to manage execution intricacies. Additionally, the Compute Library 

generates a Program Binary for the Neural Engines, resulting in an executable file that is ready for deployment.

- Memory allocation

- Dependency analysis

- Command scheduling

- Code generation



© 2024 Rebellions Inc. All rights reserved 07

Conclusion
The RBLN Compiler is a highly specialized tool designed to optimize the inference of AI models by leveraging 

the unique characteristics of neural processing hardware, like Rebellions’ ATOM™. Through techniques such 

as graph optimization, op fusion, tiling, and memory allocation, the Compiler ensures that every aspect of the 

model’s execution is fine-tuned for maximum performance. By effectively managing dependencies and leveraging 

hardware-based memory management at compile-time, the RBLN Compiler can generate highly optimized 

machine code that fully utilizes the capabilities of the underlying hardware, ensuring fast, efficient, and reliable AI 

inference.


